版权说明 操作指南
首页 > 成果 > 详情

Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fang, Leyuan;Wang, Chong;Li, Shutao;Yan, Jun;Chen, Xiangdong;...
通讯作者:
Li, ST
作者机构:
[Wang, Chong; Yan, Jun; Li, Shutao; Fang, Leyuan] Hunan Univ, Coll Elect & Informat Engn, Changsha, Hunan, Peoples R China.
[Chen, Xiangdong] Hunan Univ Chinese Med, Dept Ophthalmol, Affiliated Hosp 1, Changsha, Hunan, Peoples R China.
[Rabbani, Hossein] Isfahan Univ Med Sci, Med Image & Signal Proc Res Ctr, Esfahan, Iran.
通讯机构:
[Li, ST ] H
Hunan Univ, Coll Elect & Informat Engn, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Classification (of information);Image analysis;Image classification;Learning systems;Ophthalmology;Optical tomography;Tomography;Age-related macular degeneration;Automatic classification;Composite kernels;Extreme learning machine;Retinal disease;Retinal optical coherence tomography;Spectral domain OCT;Threedimensional (3-d);Principal component analysis;diagnostic imaging;macular degeneration;optical coherence tomography;principal component analysis;retina;three dimensional imaging;visual system examination;Diagnostic Techniques, Ophthalmological;Imaging, Three-Dimensional;Macular Degeneration;Principal Component Analysis;Retina;Tomography, Optical Coherence
期刊:
Journal of Biomedical Optics
ISSN:
1083-3668
年:
2017
卷:
22
期:
11
页码:
1-10
基金类别:
This paper was supported by the National Natural Science Foundation of China for Distinguished Young Scholars under Grant Nos. 61325007, the National Natural Science Foundation under Grant Nos. 61771192 and 61471167, the National Natural Science Foundation for Young Scientist of China under Grant No. 61501180, and China Postdoctoral Science Foundation funded Project No. 2017T100597.
机构署名:
本校为其他机构
院系归属:
第一中医临床学院
摘要:
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations amo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com