版权说明 操作指南
首页 > 成果 > 详情

Automatic Classification of Volumetric Optical Coherence Tomography Images via Recurrent Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Chong;Jin, Yuxuan;Chen, Xiangdong;Liu, Zhimin
通讯作者:
Wang, Chong(chongwang@hnu.edu.cn)
作者机构:
[Wang, Chong; Jin, Yuxuan] College of Electrical and Information Engineering, Hunan University, Changsha
410082, China
[Chen, Xiangdong; Liu, Zhimin] Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha
[Wang, Chong; Jin, Yuxuan; Chen, Xiangdong; Liu, Zhimin] 410082, China
通讯机构:
[Chong Wang] C
College of Electrical and Information Engineering, Hunan University, Changsha, China
语种:
英文
关键词:
Optical coherence tomography;Recurrent neural network;Long short-term memory;Deep residual network;Image classification
期刊:
Sensing and Imaging
ISSN:
1557-2064
年:
2020
卷:
21
期:
1
页码:
1-15
机构署名:
本校为其他机构
摘要:
Automatic and accurate classification of retinal optical coherence tomography (OCT) images is essential to assist ophthalmologists in the diagnosis and grading of macular diseases. Most existing methods classify 3-D retinal OCT volumes by separately analyzing each single-frame 2-D B-scan, and thus inevitably ignore significant temporal information among B-scans. In this paper, we propose to classify volumetric OCT images via a recurrent neural network (VOCT-RNN) which can fully exploit temporal information among B-scans. Specifically, a deep co...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com