版权说明 操作指南
首页 > 成果 > 详情

A novel k-means clustering algorithm and its application

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Yingying*;Li, Kenli;Li, Man
通讯作者:
Peng, Yingying
作者机构:
[Li, Man] College of Management and Information Engineering, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
[Li, Kenli] College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
[Peng, Yingying] College of Management and Information Engineering, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China<&wdkj&>College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
通讯机构:
College of Management and Information Engineering, Hunan University of Chinese Medicine, Changsha, Hunan, China
语种:
英文
关键词:
Algorithms;Data mining;Cluster;Clustering results;ITS applications;K-means;k-Means algorithm;K-Means clustering algorithm;k-NN algorithm;Spherical shape;Clustering algorithms
期刊:
Journal of Computational and Theoretical Nanoscience
ISSN:
1546-1955
年:
2015
卷:
12
期:
10
页码:
3658-3661
机构署名:
本校为第一且通讯机构
院系归属:
信息科学与工程学院
摘要:
K-Means algorithm has been researched adequately in recent years. Clustering result of traditional K-Means algorithm is affected by the choice of initial point and noise. In addition to, traditional K-Means algorithm only favors clusters with spherical shapes and similar sizes. A novel K-Means algorithm combining K-Means algorithm and KNN algorithm called KK -Means is proposed to solve these weaknesses in this paper. Experimental result shows that KK -Means algorithm has better performance more than traditional K-Means ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com