版权说明 操作指南
首页 > 成果 > 详情

Research on Text Mining of Syndrome Element Syndrome Differentiation by Natural Language Processing

认领
导出
Link by 中国知网学术期刊 Link by 维普学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
邓文祥;朱建平;李静;袁志鹰;吴华英;...
通讯作者:
Hui-Yong, H.;Wen-An, Z.
作者机构:
[朱建平; 袁志鹰] Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
TCM Diagnostic Institute, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
[张弋戈] Administration of Traditional Chinese Medicine of Hunan Province, Changsha, Hunan 410008, China
[张文安] Guangzhou Jiayibang Health Management Co., Ltd., Guangzhou, Guangdong 510000, China
[邓文祥; 李静; 吴华英; 姚中华] Hunan University of Chinese Medicine, Changsha, Hunan 410208, China<&wdkj&>TCM Diagnostic Institute, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
通讯机构:
[Zhang Wen-An] G
[Huang Hui-Yong] T
Guangzhou Jiayibang Health Management Co., Ltd., Guangzhou, Guangdong 510000, China<&wdkj&>TCM Diagnostic Institute, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China<&wdkj&>Administration of Traditional Chinese Medicine of Hunan Province, Changsha, Hunan 410008, China
语种:
中文
关键词:
证素辨证学;自然语言处理;中医诊断学;人工智能;文本挖掘
关键词(英文):
Syndrome element syndrome differentiation (SESD);Natural language processing (NLP);Diagnostics of TCM;Artificial intelligence;Text mining
期刊:
数字中医药(英文)
ISSN:
2096-479X
年:
2019
卷:
2
期:
2
页码:
61-71
基金类别:
We thank for the funding support from the National Natural Science Foundation of China (No. 81874429 ), Digital and Applied Research Platform for Diagnosis of Traditional Chinese Medicine (No. 49021003005 ), 2018 Hunan Provincial Postgraduate Research Innovation Project (No. CX2018B465 ) and Excellent Youth Project of Hunan Education Department in 2018 (No. 18B241 ).
机构署名:
本校为第一且通讯机构
院系归属:
中医诊断研究所
摘要:
目的 运用自然语言处理对证素辨证学(SESD)核心内容进行文本挖掘与可视化展示.方法 第一步,基于Python语言搭建文本挖掘与分析环境,以SESD的核心章节为基础,建立SESD语料库;第二步,对语料库进行数字化处理,主要步骤包括分词、信息清理与合并、文档-词条矩阵、相关词典编译和信息转换;第三步,通过词云、关键词提取和可视化等手段挖掘和展示SESD语料库的内在信息.结果 自然语言处理(NLP)可以促进计算机对SESD的识别和理解,SESD不同章节的关键词和权重不同.虚性证素是SESD的重要组成部分,如"气虚""阳虚""阴虚",重要的实性证素包括"血瘀""气滞"等,各核心证素间的关系密切.结论 辨证论治是SESD的核心...
摘要(英文):
Objective: Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods: The first step was to build a text mining and analysis environment based on Python language, and built a corpus based on the core chapters of SESD. The second step was to digitalize the corpus. The main steps included word segmentation, information cleaning and merging, document-entry matrix, dictionary compilation and information conversion. The third step was to mine and display the int...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com