版权说明 操作指南
首页 > 成果 > 详情

Real-Time Cardiac Abnormality Monitoring and Nursing for Patient Using Electrocardiographic Signals

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ao, Huamin;Zhai, Enjian;Jiang, Le;Yang, Kailin;Deng, Yuxuan;...
通讯作者:
Ao, HM;Hao, Moujia;Chen, JP;Song, T;Ge, JW
作者机构:
[Ao, HM; Ao, Huamin] Fifth Hosp Daqing City, Daqing, Peoples R China.
[Zeng, Liuting; Zhai, Enjian; Yan, Yexing; Hao, Moujia; Deng, Yuxuan; Chen, Junpeng; Chen, JP; Yang, Kailin] Daqing Hosp Tradit Chinese Med, Dept Psychiat, Psychosomat Lab, Daqing, Peoples R China.
[Zhai, Enjian] Qingdao Univ Technol, Qingdao, Peoples R China.
[Jiang, Le] United World Coll East Africa Moshi Campus, Moshi, Tanzania.
[Yang, Kailin] Capital Med Univ, Beijing Anzhen Hosp, Beijing, Peoples R China.
通讯机构:
[Hao, MJ; Chen, JP ] D
[Ao, HM ] F
[Ge, JW ] H
[Song, T ] C
Fifth Hosp Daqing City, Daqing, Peoples R China.
语种:
英文
关键词:
Nursing;Electrocardiogram signals;Anomalous electrocardiogram monitoring;Machine learning;Neural networks
期刊:
CARDIOLOGY
ISSN:
0008-6312
年:
2024
基金类别:
Science and Technology Innovation Plan; Chinese Academy of Sciences [20194001882]
机构署名:
本校为其他机构
摘要:
Introduction Cardiovascular disease care is a critical clinical application that necessitates real-time monitoring models. Previous models required the use of multi-lead signals and could not be customized as needed. Traditional methods relied on manually designed supervised algorithms, based on empirical experience, to identify waveform abnormalities and classify diseases, and were incapable of monitoring and alerting abnormalities in individual waveforms. Methods This research reconstructed the vector model for arbitrary leads using the phase space time delay method, enabling the model to ar...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com