版权说明 操作指南
首页 > 成果 > 详情

Predicting Protein Functional Class with the Weighted Segmented Pseudo-Amino Acid Composition Moment Vector

认领
导出
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhou, Xinyuan;Li, Xi;Li, Man;Lu, Xinguo
通讯作者:
Zhou, XY
作者机构:
[Zhou, Xinyuan; Zhou, XY] Changsha Univ, Dept Comp Sci & Technol, Changsha 410003, Hunan, Peoples R China.
[Lu, Xinguo; Li, Xi] Hunan Univ, Sch Informat Sci & Technol, Changsha 410082, Hunan, Peoples R China.
[Li, Man] Hunan Univ Chinese Med, Dept Comp Sci, Changsha 410208, Hunan, Peoples R China.
通讯机构:
[Zhou, XY ] C
Changsha Univ, Dept Comp Sci & Technol, Changsha 410003, Hunan, Peoples R China.
语种:
英文
期刊:
MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY
ISSN:
0340-6253
年:
2011
卷:
66
期:
1
页码:
445-462
基金类别:
National Nature Science Foundation of China [60973082, 60873184]; National Nature Science Foundation of Hunan province [07JJ5080]; Planned Science and Technology Project of Hunan Province [2009FJ3195]
机构署名:
本校为其他机构
院系归属:
信息科学与工程学院
摘要:
Predicting protein function at the proteomic-scale is one of the fundamental goals in cell biology and proteomics. In this paper, we proposed a new method for characterizing protein sequences-the Weighted Segmented Pseudo-amino acid composition Moment Vector (W-SPsAA-MV). From protein sequences, the encoding method of W-SPsAA-MV is applied to protein functional class prediction associated with the nearest neighbor algorithm (NNA) and covariant discriminant (CD) classifier. The experiment results show that our new method is efficient to predict functional class of q...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com