版权说明 操作指南
首页 > 成果 > 详情

Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gu, Qianbiao;Sun, Huiling;Liu, Peng;Hu, Xiaoli;Yang, Jiankang;...
通讯作者:
Xing, Y
作者机构:
[Xing, Yan; Gu, Qianbiao] Xinjiang Med Univ, Affiliated Hosp 1, Imaging Ctr, Urumqi 830011, Peoples R China.
[Sun, Huiling] Tradit Chinese Med Hosp Changji Hui Autonomous Pre, Dept CT & MR, Changji 831100, Changji Hui Aut, Peoples R China.
[Liu, Peng] Hunan Normal Univ, Hunan Prov Peoples Hosp, Affiliated Hosp 1, Dept Radiol, Changsha 410000, Peoples R China.
[Hu, Xiaoli] Hunan Univ Chinese Med, Affiliated Hosp 1, Dept Radiol, Changsha 410000, Peoples R China.
[Yang, Jiankang] YueYang Cent Hosp, Dept Radiol, Yueyang 414000, Peoples R China.
通讯机构:
[Xing, Y ] X
Xinjiang Med Univ, Affiliated Hosp 1, Imaging Ctr, Urumqi 830011, Peoples R China.
语种:
英文
关键词:
Deep learning radiomics;Imaging biomarker;Pancreatic ductal adenocarcinoma (PDAC);Prognosis
期刊:
Radiotherapy and Oncology
ISSN:
0167-8140
年:
2025
卷:
205
页码:
110770
基金类别:
No funding was received for this study.
机构署名:
本校为其他机构
院系归属:
第一中医临床学院
摘要:
Purpose This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC). This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and methods A total of 469 PDAC patients from four hospitals were divided into training and test sets. Handcrafted radiomics a...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com