作者机构:
[唐标] Medical School, Hunan University of Chinese Medicine, Changsha 410028, China;[邓常清] Medical School, Hunan University of Chinese Medicine, Changsha 410028, China. dchangq@sohu.com
通讯机构:
[Deng, CQ ] H;Hunan Univ Chinese Med, Mol Pathol Lab, Changsha 410208, Hunan, Peoples R China.
摘要:
<jats:p>VSMC proliferation and ECM deposition always resulted in intimal hyperplasia. Astragalus–Angelica combination has a protective effect on the cardiovascular system. The inhibition effect of different Astragalus–Angelica combination on the hyperplastic intima after vascular balloon injury in rats was investigated in this study. Astragalus–Angelica combination can inhibit the intima hyperplasia after balloon injury, in which a 1:1 ratio shows excellent results. Astragalus–Angelica combination can enhance the expression of smooth muscle<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="normal">α</mml:mi></mml:mrow></mml:math>-actin (SMа-actin) and inhibit the expression of proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin E, collagen I (Col-I), fibronectin (FN), and matrix metallopeptidase-9 (MMP-9) in hyperplastic intima, suggesting that Astragalus–Angelica combination can inhibit the intimal hyperplasia of blood vessels in rats. The mechanism is related to the inhibition of PI3K/Akt signaling pathway activation and thereby inhibits the phenotypic transformation and cell proliferation of VSMCs and thus inhibits the extracellular matrix (ECM) deposition of vascular wall during intimal hyperplasia.</jats:p>
摘要:
The aim of this study was to explore the effect by which the combination of Astragaloside IV (AST IV) and Ginsenoside Rg1 (Rg1) resisted autophagic injury in PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). We studied the nature of the interaction between AST IV and Rg1 that inhibited autophagy through the Isobologram method, and investigated the synergistic mechanism via the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. Our results showed that, based on the 50% inhibiting concentration (IC50), AST IV combined with Rg1 at a 1:1 ratio resulted in a synergistic effect, whereas the combination of the two had an antagonistic effect on autophagy at ratios of 1:2 and 2:1. Meanwhile, AST IV and Rg1 alone increased cell survival and decreased lactate dehydrogenase (LDH) leakage induced by OGD/R, reduced autophagosomes and the LC3 II positive patch, down-regulated the LC3 II/LC3 I ratio and up-regulated the p62 protein; the 1:1 combination enhanced these effects. Mechanistic study showed that Rg1 and the 1:1 combination increased the phosphorylation of PI3K I, Akt and mTOR; the effects of the combination were greater than those of the drugs alone. AST IV and the 1:1 combination suppressed the expression of PI3K III and Becline-1, and the combination elevated Bcl-2 protein expression; the effects of the combination were better than those of the drugs alone. These results suggest that after 2 h-OGD followed by reoxygenation for 24 h, PC12 cells suffer excessive autophagy and damage, which are blocked by AST IV or Rg1; moreover, the combination of AST IV and Rg1 at a 1:1 ratio of their IC50 concentrations has a synergistic inhibition on autophagic injury. The synergistic mechanism may be associated with the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. (C) 2017 Elsevier Masson SAS. All rights reserved.
作者机构:
[张伟] Affiliated Yueyang Hospital of Hunan University of Chinese Medicine, Yueyang Hunan, 414000, China;[邓常清; 刘晓丹; 李菲; 曹浪] Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China
摘要:
Background: Astragalus and Panax notoginseng are traditional Chinese medicines used for the treatments of cardio-cerebrovascular ischemic diseases, astragaloside IV (AST IV) and ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1), notoginsenoside R1 (R1) are their active components. Objective: The purpose of this work was to investigate the effect of AST IV combined with Rg1, Rb1, R1 on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. Materials and Methods: C57BL/6 mice were randomly divided into 11 groups, treated for 3 days. At 1 h after the last administration, the model of cerebral ischemia-reperfusion injury was established, and brain tissues were detected. Results: All drugs increased the contents of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and the level of total adenine nucleotides (TAN), the combinations increased energy charge (EC), the effects of four active components combination were better. The phosphorylation of AMP-activated protein kinaseα1/2 (p-AMPKα1/2) was increased in AST IV, R1, four active components combination, AST IV + Rg1 and AST IV + R1 groups, the increased effect of four active components combination was greater than that of the active components alone and AST IV + Rb1. All drugs increased glucose transporter 3 (GLUT3) mRNA and protein, and the increases of four active components combination were more obvious than those of the active components alone or some two active components combinations. Conclusion: Four active components combination of Astragalus and P. notoginseng have the potentiation on improving of energy metabolism, the mechanism underlying might be associated with promoting the activation of AMPKα1/2, enhancing the expression of GLUT3, thus mediating glucose into nerve cells, increasing the supply and intake of glucose.
作者机构:
[Chang-qing Deng; Xiao-ping Huang] Molecular Pathology Laboratory, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China;[Huang Ding; Ying-hong Tang] Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-cerebral Diseases, Changsha 410208, Hunan Province, China;[Bing-xiang Deng; Jin-dong Lu] Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha 410208, Hunan Province, China;[Chang-qing Deng] E-mail: dchangq@sohu.com
摘要:
Autophagy is a lysosome-mediated degradation process for non-essential or damaged cellular constituents, playing an important homeostatic role in cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as well as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cells, nerve cells, myocardial cells and endothelial cells. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can significantly reduce dependence and improve the quality of life of stroke survivors. In healthy cells, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cell death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as well as its roles in cerebral ischemia and the roles of TCM in modulating its activity.
作者机构:
[邓常清; 欧阳国; 唐映红; 丁煌; 黄小平] Molecular Pathology Laboratory, Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha, 410208, China
通讯机构:
[Deng, C.-Q.] M;Molecular Pathology Laboratory, China